一維變量異重流模式之驗證與模擬比較

許少華[1] 李孟霖[2] 林正傑[3]

万 要 本文以有限差分法求解一維異重流之方程式,利用陳秉鈞(2007)實驗數據加以率定捲水係數(E_w)及總阻力係數(C_a)之重要參數(實驗不易取得)。所建置之數值模式,可反映鹽水異重流於實驗入口之發展段以及於長距離(40 公尺)傳輸的物理機制。此外,本文模擬渾水異重流(含不溶於水之砂或細泥)加以比較。根據波形分析後,發現不論渾水或鹽水異重流,兩者之沿程平均厚度的波型發展結果相似。

關鍵詞:異重流、捲水係數、阻力係數、數值模擬。

Verification and Comparison of Simulation for 1-D Unsteady Density Currents

Shaohua Marko Hsu^[1] Menglin Lee^[2] Chengchieh Lin^[3]

ABSTRACT Finite Difference Method was applied for modeling unsteady one-dimensional density currents. Experimental data (from Chen, 2007) was used to calibrate and determine two important parameters: water entrainment efficiency (E_{u}) and total drag coefficient (C_{u}). The 1-D model simulated well on both the entrance developing section and mass transfer of saline density current for a long distance (40m). Simulation of turbidity currents was compared with saline density currents. Based on the analysis of wave shape, and the depth-average thickness, both currents were similar.

Key Words: saline density currents, turbidity currents, water entrainment efficiency, total drag coefficient, numerical simulation.

E-mail: p9521903@fcu.edu.tw

^[1]逢甲大學水利工程與資源保育學系教授

Professor, Department of Water Resources Engineering and Conservation, Feng Chia University, Taichung, Taiwan 407, R.O.C

^[2]逢甲大學水利工程與資源保育學系碩士

Master, Department of Water Resources Engineering and Conservation, Feng Chia University, Taichung, Taiwan 407, R.O.C.

^[3]逢甲大學土木及水利工程研究所博士生(通訊作者)

Ph.D student, Graduate Institute of Civil and Hydraulic Engineering, Feng Chia University, Taichung, Taiwan 407, R.O.C. (Corresponding Author)